

Physical Sound Synthesis

Presenter: Nguyen Minh Hieu, Siripon Sutthiwanna, Ko Wonhyeok

Content

- Motivation
- Related Work
- Our Approach & Limitation
- Role Division

Motivation - Why Physically-based Sound

"Easy" Condition

Unbounded Scene, Reflection only on Object

 $(\Delta + k^2)p(x) = 0$

"Easy" Condition

Unbounded Scene, Reflection only on Object

$$(\Delta + k^2)p(\mathbf{x}) = 0$$

$$\downarrow$$

$$p(\mathbf{x}, t) = p(\mathbf{x})e^{i\omega t}$$

Separation of Variable

"Easy" Condition Unbounded Scene, Reflection only on Object $p(\mathbf{x},t) = |p(\mathbf{x})|q(t)$

 $|p(\mathbf{x})|$

 $|p(\mathbf{x})|q(t)$

"Easy" Condition Unbounded Scene, Reflection only on Object $p(\mathbf{x},t) = |p(\mathbf{x})|q(t)$

Need to solve for all frequencies, time sample, object

 $|p(\mathbf{x})| \qquad |p(\mathbf{x})|q(t)$

"Easy" Condition

Unbounded Scene, Reflection only on Object

Figure 2: Overview of Precomputed Acoustic Transfer (PAT)

Takes **DAYS** to solve for a scene with a few second

"Easy" Condition Unbounded Scene, Reflection only on Object

Figure 2: Overview of Precomputed Acoustic Transfer (PAT)

Takes **DAYS** to solve for a scene with a few second

Let's solve "Hard" Condition Bounded Scene, Lots of Reflection

 $p(\mathbf{x},t) = |p(\mathbf{x})|q(t)$

Not necessarily true...

Let's solve "Hard" Condition Bounded Scene, Lots of Reflection

Let's tackle the main problem by choosing a different numerical solver.

"Harder Condition"...

Let's solve "Hard" Condition Bounded Scene, Lots of Reflection

Let's tackle the main problem by choosing a different numerical solver.

"Harder Condition"... but simpler Success Condition

Let's solve "Hard" Condition Bounded Scene, Lots of Reflection

Let's tackle the main problem by choosing a different numerical solver.

"Harder Condition"... but (MAYBE) simpler Success Condition

Related Work

Directional Sources and Listeners in Interactive Sound Propagation using Reciprocal Wave Field Coding

CHAKRAVARTY R. ALLA CHAITANYA*, Microsoft Research and McGill University NIKUNJ RAGHUVANSHI*, Microsoft Research KEITH W. GODIN, Microsoft Mixed Reality ZECHEN ZHANG, Microsoft Research and Cornell University DEREK NOWROUZEZAHRAI, McGill University JOHN M. SNYDER, Microsoft Research

Precomputing initial source and reflections

• Fast and effective at Runtime

But,

- memory hungry
- hard to optimize
- limited to small static scenes
- solving propagation, not synthesis

Related Work

Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains

ROHAN SAWHNEY and KEENAN CRANE, Carnegie Mellon University

Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions

ROHAN SAWHNEY*, Carnegie Mellon University, USA and NVIDIA, USA BAILEY MILLER*, Carnegie Mellon University, USA IOANNIS GKIOULEKAS[†], Carnegie Mellon University, USA KEENAN CRANE[†], Carnegie Mellon University, USA

Walk on Sphere & Walk on Stars

- No pre-computation
- Unbiased

But,

- Hard to get effective samples in unbounded domain
- can't solve all PDEs...

Solving Wave Equation with MCM (1)

Kelvin Transformations for Simulations on Infinite Domains

MOHAMMAD SINA NABIZADEH, University of California, San Diego RAVI RAMAMOORTHI, University of California, San Diego ALBERT CHERN, University of California, San Diego

Physically-based sound rendering should be done on unbounded domain.

Solving Wave Equation with MCM (2)

Main idea: Inverse the domain to make the unbounded infinity to become a singularity in the center.

Solving Wave Equation with MCM (3)

$$\frac{\partial^2 p(\mathbf{x},t)}{\partial t^2} = c^2 \nabla^2 p(\mathbf{x},t) + c \alpha \nabla^2 \frac{\partial p(\mathbf{x},t)}{\partial t}, \quad \mathbf{x} \in \Omega,$$

However, there is no stochastic representation of wave equation in general domain.

New Approach: Neural-Network based soln.

NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer

XUTONG JIN, School of Computer Science, Peking University, China SHENG LI*, School of Computer Science, Peking University, China GUOPING WANG, School of Computer Science, Peking University, China DINESH MANOCHA, University of Maryland at College Park, U.S.A

NeuralSound [SIGGRAPH 2022]

Review

"Easy" Condition Unbounded Scene, Reflection only on Object $p(\mathbf{x},t) = |p(\mathbf{x})|q(t)$

 $|p(\mathbf{x})|$

 $|p(\mathbf{x})|q(t)$

Architecture of Neural Sound

The architecture consist of 2 parts:

- Mixed Vibration Solver: Obtain the modes of vibration of the object.
- Radiation Solve: Determine the sound pressure generated by each modes

Architecture of Neural Sound

Main Limitation

voxel-base has low-resolution, requires lots of computation

Inspiration from Neural Rendering

Main Limitation

voxel-base has low-resolution, requires lots of computation

Inspiration from Neural Rendering

Hybrid Neural-Explicit Representation

efficient representation \rightarrow high quality, low memory, fast training

Inspiration from Neural Rendering

Hybrid Neural-Explicit Representation

efficient representation \rightarrow high quality, low memory, fast training "explicit" representation \rightarrow compatible with existing pipeline

slide 25

Group 1: Midterm Presentation

Result of Neural Sound

Role Division

Nguyen Minh Hieu

• Coordinator, Model Design, Training

Siripon Sutthiwanna

• Dataset, Training

Ko Wonhyeok

• Dataset, Training

